Abstract

Recent findings have identified highly transcribed genes as a source of genome instability; however, the degree to which large-scale shifts in transcriptional activity cause DNA damage was not known. One example of a large-scale shift in transcriptional activity occurs during development, when maternal regulators are destroyed and zygotic genome activation (ZGA) occurs. Here, we show that ZGA triggers widespread chromosome damage in the primordial germ cells of the nematode C. elegans. We show that ZGA-induced DNA damage activates a checkpoint response, the damage is repaired by factors required for inter-sister homologous recombination, and topoisomerase II plays a role in generating the damage. These findings identify ZGA as a source of intrinsic genome instability in the germline and suggest that genome destabilization may be a general consequence of extreme shifts in cellular transcriptional load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.