Abstract
The Arctic Ocean is changing rapidly with respect to ice cover extent and volume, growth season duration and biological production. Zooplankton are important components in the arctic marine food web, and tightly coupled to the strong seasonality in primary production. In this study, we investigate zooplankton composition, including microzooplankton, copepod nauplii, as well as small and large copepod taxa, and primary productivity in the dynamic Atlantic water inflow area north of Svalbard in May and August 2014. We focus on seasonal differences in the zooplankton community and in primary productivity regimes. More specifically, we examine how a shift from “new” (nitrate based) spring bloom to a “regenerated” (ammonium based) post bloom primary production is reflected in the diversity, life history adaptations and productivity of the dominant zooplankton. North of Svalbard, the seasonal differences in planktonic communities were significant. In spring, the large copepod Calanus finmarchicus dominated, but the estimated production and ingestion rates were low compared to the total primary production. In summer, the zooplankton community was composed by microzooplankton and the small copepod Oithona similis. The zooplankton production and ingestion rates were high in summer, and probably depended heavily on the regenerated primary production associated with the microbial loop. There was clear alteration from dominance of calanoid copepod nauplii in spring to Oithona spp. nauplii in summer, which indicates different reproductive strategies of the dominating large and small copepod species. Our study confirms the dependence and tight coupling between the new (spring bloom) primary production and reproductive adaptations of C. glacialis and C. hyperboreus. In contrast, C. finmarchicus appears able to take advantage of the regenerated summer primary production, which allows it to reach the overwintering stage within one growth season in this region north of Svalbard. This suggests that C. finmarchicus will be able to profit from the predicted increased primary production in the Arctic, a strategy also recognized in small copepod species such as O. similis. We speculate that the ability of the copepod species to utilize the regenerated summer primary production and microbial food web may determine the winners and losers in the future Arctic Ocean.
Highlights
The extreme seasonality of polar marine ecosystems is widely recognized
We evaluate how a shift from “new” spring bloom to a “regenerated” post bloom situation is reflected in the diversity, life history adaptations and productivity of the major zooplankton
By applying different zooplankton sampling tools that catches both the large (MultiNet) and small (Go-Flo water samplers) copepods, as well as microzooplankton (Niskin type water samplers), we present a more comprehensive picture of the zooplankton community in spring and summer, taking into account the role of zooplankters representing a wider spectrum of size fractions
Summary
The extreme seasonality of polar marine ecosystems is widely recognized. During winter, the sun is below the horizon (polar night) and the lack of light prevents phytoplankton growth. The nutrient replete spring-scenario is typically dominated by large phytoplankton cells (such as diatoms) utilizing nitrate as their N source, and the post bloom phytoplankton community is often dominated by smaller cells that grow efficiently on recycled N and dissolved organic carbon (Paulsen et al, 2018). This transition from spring bloom to post bloom is associated with a change in phytoplankton lipid composition, with higher contributions of the essential polyunsaturated fatty acids (PUFAs) during spring bloom than during post bloom (Parrish et al, 2005; Leu et al, 2006)
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.