Abstract
Zoom-whirl behavior has the reputation of being a rare phenomenon. The concern has been that gravitational radiation would drain angular momentum so rapidly that generic orbits would circularize before zoom-whirl behavior could play out, and only rare highly tuned orbits would retain their imprint. Using full numerical relativity, we catch zoom-whirl behavior despite dissipation. The larger the mass ratio, the longer the pair can spend in orbit before merging and therefore the more zooms and whirls seen. Larger spins also enhance zoom whirliness. An important implication is that these eccentric orbits can merge during a whirl phase, before enough angular momentum has been lost to truly circularize the orbit. Waveforms will be modulated by the harmonics of zoom-whirls, showing quiet phases during zooms and louder glitches during whirls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.