Abstract

In this work, a single ZnO nanowire field-effect transistor (NWFET) with discrete-trap storage nodes of Pt nanocrystals (NCs) embedded within Al2O3, a high-κ tunneling/control dielectric material, was successfully fabricated on a flexible plastic substrate for a non-volatile memory application. The ZnO NWFET with embedded Pt NCs exhibits a clear hysteresis loop with a threshold voltage shift of 4.16 V under the ±15 V gate–source voltage sweep ranges, implying that the charging and discharging phenomena occur during the program/erase operations. The ZnO NWFET achieves a reasonable value of approximately 105 for the on/off current ratio for read-out of storage data. Furthermore, memory features, such as programming efficiency and on-cell current, are compared between the flat and convexly bent states in order to investigate the feasibility of flexible plastic devices as transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.