Abstract

Conductometric H2 and NO2 gas sensors based on single-crystalline ZnO nanobelt sensitive layers have been developed. These layers were deposited using a rf magnetron sputterer. TEM and SEM characterization methods were employed to study the morphology of the nanobelts. These sensors were exposed to H2 and NO2 gases at operating temperatures between 225degC and 420degC. Study showed that sensors responded with highest magnitude at above 300degC. The fastest response and recovery times, with greater repeatability occurred at 385degC and 350degC for H2 and NO2 gases, respectively. Sensor with ZnO nanobelts has a much lower optimum operational temperature than that of conductometric sensors with other forms of ZnO crystal layers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.