Abstract
ZnO thin films were deposited on graphite substrates by ultrasonic spray pyrolysis method with Zn(CH3COO)2·2H2O aqueous solution as precursor. The crystalline structure, morphology, and optical properties of the as-grown ZnO films were investigated systematically as a function of deposition temperature and growth time. Near-band edge ultraviolet (UV) emission was observed in room temperature photoluminescence spectra for the optimized samples, yet the usually observed defect related deep level emissions were nearly undetectable, indicating that high optical quality ZnO thin films could be achieved via this ultrasonic spray pyrolysis method. Considering the features of transferable and low thermal resistance of the graphite substrates, the achievement will be of special interest for the development of high-power semiconductor devices with sufficient power durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.