Abstract

Metal-Organic Frameworks (MOFs) offer new ideas for the design of antibacterial materials because of their antibacterial properties, high porosity and specific surface area, low toxicity and good biocompatibility compared with other nanomaterials. Herein, a novel antimicrobial nanomaterial, MIL-101(Fe)@ZnO, has been synthesized by hydrothermal synthesis and characterized by FTIR, UV-vis, ICP-OES, XRD, SEM, EDS and BET to show that the zinc ions are doped into the crystal lattice of MIL-101(Fe) to form a Fe-Zn bimetallic structure. MIL-101(Fe)@ZnO was found to be effective against a wide range of antibacterial materials including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter junii and Staphylococcus epidermidis. It has a significant antibacterial effect, weak cytotoxicity, high safety performance and good biocompatibility. Meanwhile, MIL-101(Fe)@ZnO was able to achieve antibacterial effects by causing cells to produce ROS, disrupting the cell membrane structure, and causing protein leakage and lipid preoxidation mechanisms. In conclusion, MIL-101(Fe)@ZnO is an easy-to-prepare antimicrobial nanomaterial with broad-spectrum bactericidal activity and low toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.