Abstract

Si addition in ZnO lattice significantly improves electrical conductivity. The extra charge of Si4+ ion (in comparison to Zn2+) attracts more oxygen in the lattice and reduces oxygen vacancies. Reduction of oxygen vacancies (defects) reduces strain in the lattice. Transparency of visible light (<3.0eV) improves due to reduction of these defects in the wide bandgap (~3.3eV: UV) of ZnO. Extra charge of Si4+ enhances carrier density in the ZnO lattice. Improved carrier density, reduced strain facilitate transport of carriers and therefore conductivity increases. Si incorporation also makes the samples moisture resistant. The material becomes more robust to operate in adverse humid conditions. An ideal transparent conductive oxide (TCO) should be conductive, transmit visible light and able to sustain humid conditions. All these properties are observed in Zn(1−x)SixO material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.