Abstract

Zelus is a new programming language for modeling systems that mix discrete logical time and continuous time behaviors. From a user's perspective, its main originality is to extend an existing Lustre-like synchronous language with Ordinary Differential Equations (ODEs). The extension is conservative: any synchronous program expressed as data-flow equations and hierarchical automata can be composed arbitrarily with ODEs in the same source code. A dedicated type system and causality analysis ensure that all discrete changes are aligned with zero-crossing events so that no side effects or discontinuities occur during integration. Programs are statically scheduled and translated into sequential code that, by construction, runs in bounded time and space. Compilation is effected by source-to-source translation into a small synchronous subset which is processed by a standard synchronous compiler architecture. The resultant code is paired with an off-the-shelf numeric solver.We show that it is possible to build a modeler for explicit hybrid systems a la Simulink/Stateflow on top of an existing synchronous language, using it both as a semantic basis and as a target for code generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.