Abstract

Finding a low-cost and suitable adsorbent is still in urgent need for efficient decontamination of As(III) and As(V) elements from the polluted waters. A novel zirconium hydroxide nanoparticle encapsulated magnetic biochar composite (ZBC) derived from rice residue was synthesized for the adsorptive capture of As(III) and As(V) from aqueous solutions. The results revealed that ZBC showed an acceptable magnet separation ability and its surface was encapsulated with lots of hydrous zirconium oxide nanoparticles. Compared to As(III), the adsorption of As(V) onto ZBC was mainly dependent on the pH of the solution. The intraparticle diffusion model described the adsorption process. ZBC showed satisfactory adsorption performances to As(III) and As(V) with the highest adsorption quantity of 107.6 mg/g and 40.8 mg/g at pH 6.5 and 8.5, respectively. The adsorption of As(III) and As(V) on ZBC was almost impervious with the ionic strength while the presence of coexisting ions, especially phosphate, significantly affected the adsorption process. The processes of complexation reaction and electrostatic attraction contributed to the adsorption of As(III) and As(V) onto ZBC. ZBC prepared from kitchen rice residue was found to be a low cost environmentally friendly promising adsorbent with high removal capacity for As(III) and As(V) and could be recycled easily from contaminated waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.