Abstract

Phosphorylation, one of the most important post-translational modifications of protein, plays a crucial role in a large number of biological processes. Large-scale identification of protein phosphorylation by mass spectrometry is still a challenging task because of the low abundance of phosphopeptides and sub-stoichiometry of phosphorylation. In this work, a novel strategy based on the specific affinity of zirconium arsenate to the phosphate group has been developed for the effective enrichment of phosphopeptides. Zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe(3)O(4)@SiO(2)) were prepared by covalent immobilization of zirconium arsenate on Fe(3)O(4)@SiO(2) magnetic nanoparticles under mild conditions, and characterized by transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The prepared ZrAs-Fe(3)O(4)@SiO(2) was applied for the selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA). Our results demonstrated that the ZrAs-Fe(3)O(4)@SiO(2) magnetic nanoparticles possess higher selectivity for phosphopeptides and better capture capability towards multiply-phosphorylated peptides than commercial zirconium dioxide (ZrO(2)), which has been widely employed for the enrichment of phosphopeptides. In addition, endogenous phosphopeptides from human serum can be effectively captured by ZrAs-Fe(3)O(4)@SiO(2) magnetic nanoparticles. It is the first report, to the best of our knowledge, in which the zirconium arsenate-modified magnetic nanoparticles were successfully applied to the enrichment of phosphopeptides, which offers the potential application of this new material in phosphoproteomics study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.