Abstract

A series of materials based on the immobilization of the 12-tungstophosphoric heteropolyacid over zirconia supports have been prepared and applied as heterogeneous acid catalysts in the esterification of palmitic acid with methanol as a model reaction for the preliminary stage of the biodiesel production. The title materials have been obtained through the sol-gel method combined with a subsequent hydrothermal treatment at mild conditions, which affords catalysts with larger porosity and higher thermal and chemical stability under the esterification reaction conditions than other preparative approaches. Generating the zirconia support by hydrolysis of an alkoxyde precursor in the presence of the heteropolyacid leads to materials with homogeneously well-dispersed clusters, as well as to an increasing contribution of the tetragonal ZrO2 crystalline phase, a decreasing size of the nanoparticles and larger microporous volumes as the loading of the Keggin-type species increases. The 12-tungstophosphoric acid retains its catalytic activity in the esterification of palmitic acid with methanol at 60°C upon immobilization over zirconia and conversions even higher than those observed under homogeneous conditions are obtained due to the active contribution of the support. The sample with a 30% mass percentage of heteropolyacid has been identified as the most efficient catalyst because it affords conversions above the 90% and shows the lower loss of activity over successive reaction runs among all of our materials. This loss of activity has been analyzed on the basis of the leaching of the catalyst and the fouling of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.