Abstract
In spite of extraordinary properties of zinc sulphide nanoparticle (nZnS), its role on plant system is not well understood, yet. Therefore, this study was aimed to assess the uptake, translocation and effects of nZnS in mung bean (Vigna radiata) plant at 0, 0.1, 0.5 and 1 mg L−1 concentrations. In this study, nZnS was synthesized by modified reflux method and physicochemical characterizations were conducted. The effects of nZnS on mung bean plant were determined by seed germination, growth parameters, membrane integrity and ROS-antioxidant defense assays. Our results showed that nZnS treatment has significantly increased seed germination, root-shoot length, pigment content and decreased lipid peroxidation. There were increased total antioxidant activity (TAA), DPPH and flavonoid contents found in treated plants. Also, nZnS treatment did not activate oxidative stress determined by SOD, CAT, CPX, APOX and GR activities. The uptake and translocation of nZnS in mung bean plants were determined by Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), revelling that nZnS localized primarily in the vacuoles and chloroplasts. Besides, electron micrographs showed no alteration in cell structures between treated and control plants, further confirming that nZnS treatment has no phytotoxic effects. In vitro and in vivo studies on Zn release from nZnS were also determined using Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Energy Dispersive X-ray (EDX), which showed that the Zn release and particles uptake were concentration dependent. Overall, results of this study demonstrated the positive role of nZnS on growth and antioxidant defense responses in V. radiata at the experimental concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.