Abstract

Zinc self-diffusion was measured in single crystal zinc oxide using nonradioactive Zn70 as the tracer isotope and secondary ion mass spectrometry for data collection. Crystal mass was closely monitored to measure ZnO evaporation. Diffusion coefficients were isotropic with an activation energy of 372 kJ/mol. Zinc self-diffusion is most likely controlled by a vacancy mechanism. Electrical property measurements exhibit a plateau in conductivity at intermediate pO2 with an increase in reducing atmospheres. An analysis of the defect structure is presented that indicates that oxygen vacancies are probably the intrinsic ionic defects responsible for n-type conductivity in reducing atmospheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.