Abstract

Achieving control over the distribution of biocides across the thickness of polymer nanocomposite films is one of the largest challenges to develop efficient antibacterial surfaces. In such applications, it is key to maximize the biocide presence at the film top surface to ensure contact with bacteria. Here, we make use of evaporation driven colloidal self-assembly to control the vertical distribution of biocides in polymer composite films cast from colloidal blends of polymer and zinc oxide (ZnO) nanoparticles. We present a thorough study which shows that the evaporation rate and ZnO volume fraction have a strong impact on the final film architecture and on its wetting and antibacterial properties. For high enough ZnO volume fraction, the ZnO nanoparticles assemble in superstructures on top of the film, which are higher the slower the evaporation rate used, and maximum ZnO surface coverage achieved through slow film drying. At high ZnO volume fraction (ϕ=0.29), the zone of inhibition diameter against E. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.