Abstract

ZnO nanorods with excellent optical and electro-optical emission characteristics were grown using high- and low-temperature techniques on solid and soft substrate materials. The solid crystalline substrates included p-4H-SiC and p-GaN, while the soft amorphous substrates included p-type polymers deposited on glass and flexible plastic. Two different growth approaches were used to produce these samples. We used the vapor–liquid–solid (VLS) technique (high temperature) and aqueous chemical growth (ACG), which is a low-temperature technique. These ZnO nanorod samples were characterized by room temperature photoluminescence (PL) and processed to fabricate light-emitting diodes (LEDs). The LED characteristics were further investigated by I–V and electroluminescence (EL). As observed by PL measurements, all samples revealed a sharp narrow ultraviolet (UV) peak due to band-edge emission, indicating the good crystalline quality of the grown ZnO nanorods. The origin of the different peaks within the visible region was correlated to different deep level defects reported earlier for ZnO. All fabricated LEDs showed EL providing a wide band extended through the whole visible spectrum and hence produced clear white light observable to the naked eye. The emitted color quality investigation showed that superior color quality was manifested in a high color rendering index and stable color under current variation, indicating that these heterojunction and hybrid LEDs have potential for the development of future light sources. The ZnO nanorod-based LEDs grown by low-temperature ACG on glass and flexible plastic can, after further development, be candidates for future large-area white-light sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.