Abstract

Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, -ethanolamine, and -serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired delta 5 and delta 6 desaturation: linoleic acid and dihomo-gamma-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.