Abstract
During the production of pig iron in a blast furnace, a Zn- and Pb-containing sludge is generated in the air pollution control system. This toxic waste can be landfilled after dewatering and pretreatment, which is very costly. The sludge particles contain large amounts of Fe and C that could be recycled in the furnace. However, the Zn content of the sludge is high, and the Zn input to the blast furnace must be limited, so Zn has to be removed. This paper describes a hydrometallurgical process whereby the sludge is leached under both acid (HCl) and oxidizing conditions. After the separation of the solids, which mainly contain C and Fe, from the leaching solution, the latter is passed through an anion exchanger to remove Zn and Pb and is recirculated to the reactor. Investigation of the leaching behavior showed that a pH below 1.5 and a redox potential above 650 mV are required to obtain high leaching efficiencies for Zn and Pb. Sequential extraction showed that the largest part of Zn and Pb is extracted in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.