Abstract

To replace the current expensive precious metal catalysts for water electrolysis, it is important to develop inexpensive and powerful bifunctional catalysts for hydrogen production. It is an effective way to improve catalytic performance using excellent templates and elemental doping. Here, a hierarchical structure Fe-Co3S4/MoS2 was synthesized using an Fe-ZIF precursor prepared by ion exchange, followed by hydrothermal sulfuration and annealing. It required overpotentials of only 93 mV and 243 mV to achieve a current density of 10 mA cm-2 in the HER and OER, respectively. It also showed excellent catalytic performance for overall water splitting, requiring only 1.42 and 1.71 V to achieve current densities of 10 and 100 mA cm-2 in 1 M KOH. The catalyst also demonstrated excellent ultra-long-term stability. The superb catalytic performance and stability can be attributed to the Fe doping, exposing more active sites while retaining the highly stable framework of the ZIF. The component modulation of Co3S4 and MoS2 by Fe doping induced high intrinsic activity and excellent transfer coefficients. This work presents a novel approach to prepare noble metal-free catalysts with highly stable rich interfaces and defects for overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.