Abstract

Single-cell RNA sequencing (scRNA-seq) has enabled the simultaneous transcriptomic profiling of individual cells under different biological conditions. scRNA-seq data have two unique challenges that can affect the sensitivity and specificity of single-cell differential expression analysis: a large proportion of expressed genes with zero or low read counts ('dropout' events) and multimodal data distributions. We have developed a zero-inflation-adjusted quantile (ZIAQ) algorithm, which is the first method to account for both dropout rates and complex scRNA-seq data distributions in the same model. ZIAQ demonstrates superior performance over several existing methods on simulated scRNA-seq datasets by finding more differentially expressed genes. When ZIAQ was applied to the comparison of neoplastic and non-neoplastic cells from a human glioblastoma dataset, the ranking of biologically relevant genes and pathways showed clear improvement over existing methods. ZIAQ is implemented in the R language and available at https://github.com/gefeizhang/ZIAQ. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.