Abstract
We investigate the ground-state properties of the highly degenerate non-coplanar phase of the classical bilinear-biquadratic Heisenberg model on the triangular lattice with Monte Carlo simulations. For that purpose, we introduce an Ising pseudospin representation of the ground states, and we use a simple Metropolis algorithm with local updates, as well as a powerful cluster algorithm. At sizes that can be sampled with local updates, the presence of long-range order is surprisingly combined with an algebraic decay of correlations and the complete disordering of the chirality. It is only thanks to the investigation of unusually large systems (containing $\sim 10^8$ spins) with cluster updates that the true asymptotic regime can be reached and that the system can be proven to consist of equivalent (i.e., equally ordered) sublattices. These large-scale simulations also demonstrate that the scalar chirality exhibits long-range order at zero temperature, implying that the system has to undergo a finite-temperature phase transition. Finally, we show that the average distance in the order parameter space, which has the structure of an infinite Cayley tree, remains remarkably small between any pair of points, even in the limit when the real space distance between them tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.