Abstract

In this work, we describe a new polynomial-time attack on the multilinear maps of Coron, Lepoint, and Tibouchi (CLT13), when used in candidate indistinguishability obfuscation (iO) schemes. More specifically, we show that given the obfuscation of the simple branching program that computes the always zero functionality previously considered by Miles, Sahai and Zhandry (Crypto 2016), one can recover the secret parameters of CLT13 in polynomial time via an extension of the zeroizing attack of Coron et al. (Crypto 2015). Our attack is generalizable to arbitrary oblivious branching programs for arbitrary functionality, and allows (1) to recover the secret parameters of CLT13, and then (2) to recover the randomized branching program entirely. Our analysis thus shows that almost all single-input variants of iO over CLT13 are insecure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.