Abstract

A theoretical study of one-dimensional heterostructures composed of alternate layers of a Kerr polaritonic material and a linear dispersive metamaterial is performed. For frequency values at the edges of the non-Bragg zero-ϕeff gap of the heterostructure in the linear regime, a switching from very low to high transmission states is obtained and localized gap solitons of various orders are found, depending on the particular value of the incident power. Soliton solutions are shown to be robust with respect to absorption effects and a study is presented for gap soliton phases at the top and bottom of the zero-ϕeff gap in the case of defocusing and focusing nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.