Abstract

Triple active bridge (TAB) as an isolated multiport converter is a promising integrated energy system for smart grids or electric vehicles. This article aims to derive and analyze zero voltage switching (ZVS) regions of TAB, in which both switching losses are reduced, and electromagnetic interference issues are mitigated. In the proposed closed-form solution of ZVS criteria, parameters such as the parasitic capacitance of the switches, the leakage inductance of the transformer, the switching frequency, the port voltage, the phase-shift inside and between the full-bridges are all taken into account. The analysis shows how the five degrees of freedom can be used to maintain ZVS operation in various operating points. The analysis and derived closed-form ZVS criteria are experimentally verified using a laboratory prototype. The derived analytical ZVS criteria are a powerful tool to study and optimize the operation of TAB converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.