Abstract

We study the zero viscosity and thermal diffusivity limit of an initial boundary problem for the linearized Navier–Stokes–Fourier equations of a compressible viscous and heat conducting fluid in the half plane. We consider the case that the viscosity and thermal diffusivity converge to zero at the same order. The approximate solution of the linearized Navier–Stokes–Fourier equations with inner and boundary expansion terms is analyzed formally first by multiscale analysis. Then the pointwise estimates of the error terms of the approximate solution are obtained by energy methods. Thus establish the uniform stability for the linearized Navier–Stokes–Fourier equations in the zero viscosity and heat conductivity limit. This work is based on (Comm. Pure Appl. Math. 52 (1999), 479–541) and generalize their results from isentropic case to the general compressible fluid with thermal diffusive effect. Besides the viscous layer as in (Comm. Pure Appl. Math. 52 (1999), 479–541), the thermal layer appears and couples with the viscous layer linearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.