Abstract

With a decomposition scheme for the bath correlation function, the hierarchy equation of motion (HEOM) is extended to the zero-temperature sub-Ohmic spin-boson model, providing a numerically accurate prediction of quantum dynamics. As a dynamic approach, the extended HEOM determines the delocalized-localized (DL) phase transition from the extracted rate kernel and the coherent-incoherent dynamic transition from the short-time oscillation. As the bosonic bath approaches from the strong to weak sub-Ohmic regimes, a crossover behavior is identified for the critical Kondo parameter of the DL transition, accompanied by the transition from the coherent to incoherent dynamics in the localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.