Abstract
The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.