Abstract

As radio frequency identification (RFID) applications become ubiquitous, security and privacy issues have been addressed with universal acceptances. This paper proposes a lightweight Zero-Knowledge Authentication Protocol (ZKAP) based on alternative mode to address such severe problems. In ZKAP, dual zero-knowledge proofs are randomly chosen to provide anonymity and mutual authentication without revealing any sensitive identifiers. Pseudo-random flags and access lists employed for quick search and check ensure high efficiency and scalability. Meanwhile, formal proof model based on reasonable mathematical assumptions is established to prove the adaptive completeness, soundness and zero-knowledgeness, and the attack models are adopted to analyze the resilience and resistance for malicious attacks. It indicates that ZKAP owns no obvious design defects theoretically and is robust enough to resist major attacks (e.g., forgery, replay, Man-in-the-Middle, and tracking). The protocol is attractive and appropriate for low-cost and resource-restricted RFID systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.