Abstract

Oxidative desulfurization (ODS), as a novel desulfurization technique of fuel oil, possesses high desulfurization efficiency for aromatic sulfide and low cost, making it a promising approach. The key to the technology lies in the rational design of catalysts with high activity and stability. Polyoxometalates, which are environmentally friendly, cost-effective, and abundantly available, face constraints in the development of ODS applications due to their low specific surface area and difficulty in regeneration. Introducing metal oxides into carriers with large specific surface areas to obtain heterogeneous catalysts is an effective solution to this problem. Beta zeolites, with regular three-dimensional channel systems, large specific surface area, and superior thermal/hydrothermal stability, are usually used as carriers. In this work, we developed a strategy to enhance zeolite carrier utilization efficiency by introducing Ta5+ species into the rigid framework of zeolites containing confined MoO3. The Ta species in the zeolite framework and the confined MoO3 produce a synergistic effect, exhibiting extremely high catalytic activity for the aerobic oxidative desulfurization of various organic aromatic sulfur compounds under mild conditions (90 °C and atmospheric pressure) in a deep eutectic solvent, surpassing common heterogeneous catalysts for oxidative desulfurization. Moreover, it can resist the adverse effects of interferents, such as naphthalene and indole. Additionally, the confined nature of Beta zeolite endows it with exceptional stability, demonstrating distinctive recyclability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.