Abstract

In this Letter, we investigate the occurrence of the Zeno and anti-Zeno effects for quantum Brownian motion. We single out the parameters of both the system and the reservoir governing the crossover between Zeno and anti-Zeno dynamics. We demonstrate that, for high reservoir temperatures, the short time behavior of environment induced decoherence is ultimately responsible for the occurrence of either the Zeno or the anti-Zeno effect. Finally, we suggest a way to manipulate the decay rate of the system and to observe a controlled continuous passage from decay suppression to decay acceleration using engineered reservoirs in the trapped ion context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.