Abstract
Zebrafish ( Danio rerio) has emerged as a powerful genetic model for the study of vertebrate hematopoiesis. However, methods for detection and isolation of hematopoietic stem cells (HSCs) have not yet been reported. In mammals, the combination of Hoechst 33342 staining with flow cytometry can be used for separation of a bone marrow side population (SP), which is highly enriched for HSCs. We applied a similar procedure to hematopoietic kidney marrow cells from adult zebrafish, and identified a segregated cohort of SP cells, which demonstrate a set of features typical of stem cells. SP cells show extremely low scatter characteristics, and are small in size with a minimum of cytoplasm. Treatment of zebrafish kidney marrow cells with reserpine or fumitremorgin C, which inhibit the ABCG2 transporter responsible for Hoechst 33342 efflux, caused a clear reduction in the number of SP cells. Consistent with the quiescent state of HSCs, the SP cells are strongly resistant to the myelosuppressive agent 5-fluorouracil. In addition, SP cells specifically demonstrate higher expression of genes known to be markers of HSCs of mammals. Hence, our results show that the SP phenotype is conserved between mammals and teleosts, and the properties of the zebrafish SP cells indicate a significant enrichment for HSCs. These rapid flow cytometric methods for purification of HSCs from zebrafish may greatly facilitate genetic analysis of stem cells using the advantages of this vertebrate model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.