Abstract

The transfer rate of photo-generated electrons is a critical factor that determines the photocatalytic efficiency of Z-scheme photocatalytic systems. Here, a novel Z-scheme g-C3N4-AQ-MoO3 photocatalyst with anthraquinone (AQ) serving as an e– transfer channel for hydrogen production was proposed. Its enhanced photocatalytic activity is due to the accelerated transfer of e– in the form of charge inside AQ, which also suppresses the recombination of photo-generated e– and h+. In addition, the reduction area is significantly increased by the exfoliation of g-C3N4 into thin layers. Due to the synergistic effect of rapid e– transfer and large reduction area, Z-scheme g-C3N4-AQ-MoO3 has a high hydrogen production efficiency that can reach 2018 μmol/g with the presence of triethanolamine as a hole sacrificial agent after 180 min of simulated sunlight illumination. This work provides a new strategy to design and develop Z-scheme photocatalytic systems with excellent electron migration rates and high charge separation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.