Abstract
The ns-laser ablation characteristics of tetragonal 3YSZ versus cubic 8YSZ have been investigated to minimize a transfer of particulates in the pulsed laser deposition process. 3YSZ is significantly less prone to the exfoliation of μm-sized fragments than 8YSZ due to its enhanced fracture toughness, which allows the deposition of particulate-free films in a fluence range of 1.2–1.5 J/cm 2. The influence of the PLD process parameters on the film microstructure and stoichiometry have been investigated with respect to the growth of dense 3YSZ layers with adequate adhesion to the c-cut sapphire single crystals. Dense 3YSZ films are obtained below a threshold pressure of ∼0.025 mbar. At 600 °C polycrystalline layers with a preferential (1 0 1) and (0 0 1) orientation and a columnar microstructure are formed while deposition at room temperature yields uniform amorphous layers. Strongly oxygen deficient films of the metastable t′′ phase are obtained at a low background pressure of 10 −3 mbar. The meta phase films exhibit a low activation energy of 0.77 ± 0.02 eV and an enhanced d.c. electrical conductivity, e.g. 9 × 10 −5 S/cm at 400 °C, comparable or even higher than for 8YSZ films and bulk at temperatures up to 500 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.