Abstract

Herein, an ultrasensitive electrochemical biosensor was constructed by a high-efficiency Y-shaped walker with abundant recognition domains (YSWARD) for microRNA-21 (miRNA-21) detection. Once target miRNA-21 induced the assembly of Y-shaped DNA nanostructure (YSDN) through a catalytic hairpin assessbly (CHA), amounts of the YSWARD could be synthesized with the assistance of padlock via rolling circle amplification (RCA). Impressively, the YSWARD exhibited much higher cleavage efficiency (2.81 × 109) which was at least ten times more than that of conventional Y-shaped walker with three recognition domains (2.36 × 108). As a proof of concept, the YSWARD was adopted to construct electrochemical biosensing platform that achieved ultrasensitive detection with a detection limit of 10.6 aM for target miRNA-21, which carved out promising potential for exploring novel DNA walker platforms to apply in sensitive detection of biomarkers and early diagnosis of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.