Abstract
Tendon stem/progenitor cell (TSPC) senescence is often associated with age-dependent tendon diseases and greatly reduces the capacities for tendon repair and replacement. Exosomes contain bioactive molecules and have been increasingly used in regenerative medicine. In the present study, we demonstrated the antiaging effects of young exosomes from circPVT1-overexpressing TSPCs at early passages (circPVT1-exo). These exosomes attenuated the phenotypes of aged TSPCs at late passages (L-TSPCs) by enhancing self-renewal and proliferation abilities, suppressing cell senescence, maintaining their tenogenic capacity, and weakening their osteogenic differentiation. Mechanistically, circPVT1-exo inhibited the NF-κB pathway and increased SIRT1 expression in L-TSPCs. Knockdown of SIRT1 reversed these effects as evidenced by increased senescence, decreased proliferation, and tenogenic differentiation. These results suggest that circPVT1-exo may ameliorate aging-impaired TSPC function by modulating the SIRT1/NF-κB pathway, suggesting that circPVT1-exo has therapeutic potential for age-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.