Abstract
In the paper, the elasticity theory was applied to consider the mechanical properties of rectilinearly anisotropic seven-constant tetragonal crystals and their cylindrically anisotropic nano/microtubes with and with no chiral angle, being the angle between the crystallographic symmetry axis and elongated tube axis. Pt is found that the number of crystals with negative Poisson’s ratio is the least for rectilinear anisotropy and is much larger for curvilinear anisotropy. With a nonzero chiral angle, all nano/microtubes can have negative Poisson’s ratio. The elastic problem on axial tension of cylindrical nano/microtubes is solved for radially inhomogeneous stresses: three normal stresses and one shear stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.