Abstract
In foggy weather scenarios, the scattering and absorption of light by water droplets and particulate matter cause object features in images to become blurred or lost, presenting a significant challenge for target detection in autonomous driving vehicles. To address this issue, this study proposes a foggy weather detection method based on the YOLOv5s framework, named YOLOv5s-Fog. The model enhances the feature extraction and expression capabilities of YOLOv5s by introducing a novel target detection layer called SwinFocus. Additionally, the decoupled head is incorporated into the model, and the conventional non-maximum suppression method is replaced with Soft-NMS. The experimental results demonstrate that these improvements effectively enhance the detection performance for blurry objects and small targets in foggy weather conditions. Compared to the baseline model, YOLOv5s, YOLOv5s-Fog achieves a 5.4% increase in mAP on the RTTS dataset, reaching 73.4%. This method provides technical support for rapid and accurate target detection in adverse weather conditions, such as foggy weather, for autonomous driving vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.