Abstract

In foggy weather scenarios, the scattering and absorption of light by water droplets and particulate matter cause object features in images to become blurred or lost, presenting a significant challenge for target detection in autonomous driving vehicles. To address this issue, this study proposes a foggy weather detection method based on the YOLOv5s framework, named YOLOv5s-Fog. The model enhances the feature extraction and expression capabilities of YOLOv5s by introducing a novel target detection layer called SwinFocus. Additionally, the decoupled head is incorporated into the model, and the conventional non-maximum suppression method is replaced with Soft-NMS. The experimental results demonstrate that these improvements effectively enhance the detection performance for blurry objects and small targets in foggy weather conditions. Compared to the baseline model, YOLOv5s, YOLOv5s-Fog achieves a 5.4% increase in mAP on the RTTS dataset, reaching 73.4%. This method provides technical support for rapid and accurate target detection in adverse weather conditions, such as foggy weather, for autonomous driving vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.