Abstract

A three-dimensional (3D) integrated circuit (IC) with multiple dies vertically connected by through-silicon-via (TSV) offers many benefits over current 2D ICs. Multicore logic-memory die stacking has been considered as one candidate for 3D ICs by utilizing the TSV to provide high data bandwidth between logic and memory. However, 3D ICs suffer from the low-yield issue. This article proposes effective yield-enhancement techniques for multicore die-stacked 3D ICs. Two reconfiguration schemes are proposed to logically swap the positions of cores in the dies of 3D ICs such that the yield of 3D ICs is increased. Two algorithms also are proposed to determine the reconfiguration effectively. Simulation results show that the proposed reconfiguration schemes can achieve a yield gain ranging from 1% to 11%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.