Abstract

Tissue engineering requires the ability to design scaffolds with mechanical properties similar to those of the native tissue. Here, B. mori silk yarns are used as a model system to demonstrate the potential benefits and drawbacks of several textile methods used to fabricate tissue engineering scaffolds. Fibers are plied, twisted, cabled, braided, and/or textured to form several geometries with a wide range of mechanical outcomes. Predictable changes in ultimate tensile strength and stiffness are demonstrated following processing and as a function of test environment. The mechanical effects of increasing turns per inch and combining groups of fibers into higher-order yarn structures are demonstrated. Braids, one of the most commonly used textile structures, are shown to be limited by a change in stiffness following the locking-angle and therefore, potentially not the ideal structure for tissue engineering. Cabled yarns appear to allow the most flexibility in mechanical outcomes with a highly organized geometry. Twisted yarns, while more economical than cabled yarns, result in a higher stiffness and lower percent elongation at break than cabled yarns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.