Abstract

We formulate and explore the physical implications of a new translation gauge theory of gravity in flat space–time with a new Yang–Mills action, which involves quadratic gauge curvature and fermions. The theory shows that the presence of an "effective Riemann metric tensor" for the motions of classical particles and light rays is probably the manifestation of the translation gauge symmetry in flat physical space–time. In the post-Newtonian approximation of the tensor gauge field produced by the energy–momentum tensor, the results are shown to be consistent with classical tests of gravity and with the quadrupole radiations of binary pulsars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.