Abstract

Gadolinium substituted yttrium iron garnet (Gd: YIG: Y3−xGdxFe5O12 where x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5) nanopowders were synthesized by microwave hydrothermal method. Phase structure of synthesized powders was examined using fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) which revealed a cubic garnet structure. Spherical-like morphology of synthesized powders was confirmed by field emission scanning electron microscopy (FESEM) studies. The synthesized powders were sintered at 1100 °C for 60 min using microwave furnace and characterized by using XRD and FESEM. Magnetic properties such as saturation magnetization and Curie temperature were measured using vibration sample magnetometer (VSM) and differential scanning calorimetry (DSC) studies respectively. Temperature stability of magnetization was measured using pulse magnetometer and complex permeability was measured over a frequency range of 100 kHz–1.8 GHz. The obtained results showed that the saturation magnetization as well as permeability decrease while curie temperature and temperature stability increase with Gd concentration. It is concluded that substitution of Gd makes the YIG better microwave magnetic material, which may be used in high power non-reciprocal microwave devices in the microwave region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.