Abstract

Element mapping has been so far an analytical field covered by those investigation methods using a scanned particle beam on the excitation side of the specimen. These methods include localized interaction processes, as in the electron microprobe, secondary ion mass spectrometer and Auger electron spectrometer. On the other hand, methods which use a stationary radiation beam on the input side (non-localized interaction) usually give summarized information about the sample area (X-ray fluorescence spectrometry, photoelectron spectrometry, …). This paper deals with an approach to extending the application field of X-ray fluorescence analysis (XRFA) to element mapping. Fig. 1 shows the main components of the X-ray imaging system. Since modern SRF systems often work under computer control, the only additional hardware components of the system are a scanned sample holder and an X-ray source producing a line-shaped X-ray beam. The computer is usually not used for ease, speed or convenience of operation, but is used to generate the element image and process all the collected fluorescence data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.