Abstract

AbstractHere we present a model of hard X-ray flares and hot plasma outflows (optical jets) observed in protostars. Assuming that the dipole magnetic field of a protostar threads the protostellar disk, we carried out 2.5-dimensional magnetohydrodynamic (MHD) simulations of the diskstar interaction. The closed magnetic loops connecting the central star and the disk are twisted by the rotation of the disk. In the presence of resistivity, magnetic reconnection takes place in the current sheet formed inside the expanding loops. Hot, outgoing plasmoid and post flare loops are formed as a result of the reconnection. Numerical results are consistent with the observed plasma temperature (107 – 108K), the length of the flaring loop (1011 – 1012cm), and the speed of optical jets (200 – 400 km s−1 ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.