Abstract

Inspecting X-ray images is an essential aspect of medical diagnosis. However, due to an X-ray's low contrast and low dynamic range, important aspects such as organs, bones, and nodules become difficult to identify. Hence, contrast adjustment is critical, especially because of its ability to enhance the details in both bright and dark regions. For X-ray image enhancement, we therefore propose a new concept based on component attenuation. Notably, we assumed an X-ray image could be decomposed into tissue components and important details. Since tissues may not be the major primary focus of an X-ray, we proposed enhancing the visual contrast by adaptive tissue attenuation and dynamic range stretching. Via component decomposition and tissue attenuation, a parametric adjustment model was deduced to generate many enhanced images at once. Finally, an ensemble framework was proposed for fusing these enhanced images and producing a high-contrast output in both bright and dark regions. We have used measurement metrics to evaluate our system and achieved promising scores in each. An online testing system was also built for subjective evaluation. Moreover, we applied our system to an X-ray data set provided by the Japanese Society of Radiological Technology to help with nodule detection. The experimental results of which demonstrated the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.