Abstract
We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.