Abstract

Hollow Fe oxide nanoparticles have many applications in catalysis, drug delivery, and energy storage. Hollow Fe oxide shells can also be used for preventing the sintering of catalytically active cores and for magnetic recovery of bimetallic nanoparticles. However, more studies are required under real reaction conditions on the availability of the interior surface or active cores in hollow nanoparticles. Herein, we introduce a simple approach to study the penetrability of hollow Fe oxide shells by attempting galvanic exchange reactions between the remaining Fe(0) core within the hollow Fe oxide shell and Pd(II) salts. First, in situ high-temperature Fe K-edge XANES was used to monitor the formation of hollow Fe oxide nanoparticles from Fe nanoparticles. Core-void-shell Fe-Fe oxide nanoparticle intermediates were captured at different time intervals and then reacted with Pd(II). The reduction of Pd(II) was characterized by in situ Pd L3-edge XANES spectra. The results show that the core-void-shell nanoparti...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.