Abstract
Phase change lithography has pretty potential applications for high density optical data storage mastering and micro/nano structure patterning because it is not restricted by optical diffraction limitation and at relatively low cost. GeSbTe, as an initially investigated material for phase change lithography, its mechanism of selective etching in inorganic or organic alkaline aqueous solutions, such as NaOH and tetramethylammonium hydroxide (TMAH), is still unknown. In this paper, XPS measurement is used to study the selective wet etching mechanism of GeSbTe phase change thin films with TMAH solution, and the results show that oxidization played an important role in the etching process. Ge, Sb and Te are oxidized into GeO<sub>2</sub>, Sb<sub>2</sub>O<sub>5</sub> and TeO<sub>2</sub>, respectively, and then as the corresponding salts dissolved into the etchant solution. Ge-X (X is Ge, Sb or Te) bonds are first broken in the etching, then Sb-X bonds, and finally Te-Te bonds. To confirm the effect of oxidization in the etching, H<sub>2</sub>O2<sub></sub> as an oxidant is added into the TMAH solution, and the etching rates are increased greatly for both amorphous and crystalline states. The selective etching mechanism of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change films is discussed by the difference of bonds breakage between the amorphous and crystalline states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.