Abstract
The chemical structure of silver, nickel and bimetallic silver–nickel nanoparticles, i.e. Ag, Ni and AgNi NPs, with sizes ≤35nm, obtained by derived seed-mediated growth method on transparent and conductive indium tin oxide (ITO) substrates, has been studied by a comparative X-ray photoelectron spectroscopy (XPS) analysis of Ag 3d, Ni 2p and O1s core levels in combination with X-ray diffraction and optical absorption spectroscopy in the visible range. XPS indicates that the surface of Ag NPs is not oxidized, while Ni NPs are clearly oxidized to nickel oxide and hydroxide. Absorptions at 384 and 600nm in Ni optical spectrum are consistent with the presence of nickel in oxidized state; however the presence of metallic Ni 2p signal in Ni XPS spectrum indicates that a metallic nickel core is still present. In the case of bimetallic AgNi NPs, the XPS results are consistent with the presence of metallic silver core surrounded by NiO+Ni(OH)2 shell. XPS spectra also show the presence of Ag2O at the interface between the Ag metallic core and the oxidized nickel shell. XRD patterns of AgNi and Ag NPs show the typical fcc structure of metallic silver, confirming the presence of Ag metallic core in AgNi NPs. The surface plasmon resonance peak (SPR) of AgNi NPs shows a blue shift to 375nm with respect to the SPR of Ag NPs, located at 405nm, reflecting the character of the oxidized nickel shell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.