Abstract
Rapid development of X-ray free-electron laser (XFEL) science has taken place in recent years owing to the consecutive launch of large-scale XFEL instruments around the world. Research areas such as warm dense matter physics and coherent X-ray imaging take advantage of the unprecedentedly high intensities of XFELs. A single XFEL pulse can induce very complex dynamics within matter initiated by core-hole photoionization. Owing to this complexity, theoretical modeling revealing details of the excitation and relaxation of irradiated matter is important for the correct interpretation of the measurements and for proposing new experiments.XMDYNis a computer simulation tool developed for modeling dynamics of matter induced by high-intensity X-rays. It utilizes atomic data calculated by theab initio XATOMtoolkit. Here these tools are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.