Abstract

Differentiation of B cells into plasma cells requires X-box binding protein–1 (XBP-1). In the absence of XBP-1, B cells develop normally, but very little immunoglobulin is secreted. XBP-1 controls the expression of a large set of genes whose products participate in expansion of the endoplasmic reticulum (ER) and in protein trafficking. We define a new role for XBP-1 in exerting selective translational control over high and sustained levels of immunoglobulin M (IgM) synthesis. XBP-1−/− and XBP-1+/+ primary B cells synthesize IgM at comparable levels at the onset of stimulation with lipopolysaccharide or CpG. However, later there is a profound depression in synthesis of IgM in XBP-1−/− B cells, notwithstanding similar levels of μmRNA. In marked contrast, lack of XBP-1 does not affect synthesis and trafficking of other glycoproteins, or of immunoglobulin light chains. Contrary to expectation, degradation of proteins from the ER, using TCRα or US11-mediated degradation of class I major histocompatibility complex molecules as substrates, is normal in XBP-1−/− B cells. Furthermore, degradation of membrane μ was unaffected by enforced expression of XBP-1. We conclude that in primary B cells, the XBP-1 pathway promotes synthesis and secretion of IgM, but does not seem to be involved in the degradation of ER proteins, including that of μ chains themselves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.